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very similar to those for Pd. 
Summing up, the BOC model calculations project 

that C-0 bond cleavage occurs directly on Ni to pro- 
duce carbidic carbon followed by progressive hydro- 
genation up to the formation of CHI. There is no way 
to retain the C-O bond and form CH30H. By contrast, 
the assistance of hydrogen in C-0 bond cleavage is 
critical for Pd (and Pt). Here, the C-0 bond rupture 
is not likely to occur before methoxide CH30, is formed, 
after which both decomposition to CH3,, + 0, and hy- 
drogenation to CH30H can proceed with similar acti- 
vation barriers. These projections are in agreement 
with the selectivities observed experimentally for CO 
hydrogenation over Ni, Pd, and Pt.33-40 
Concluding Remarks 

The analytic BOC-MP model explicitly interrelates 
many seemingly disparate chemisorption phenomena, 
including surface reactivity, which reveals the essential 
“elephantness” of chemisorption. Let us stress again 
that the BOC-MP model is based on a few well-defined 
assumptions and within these assumptions, the model 
interrelations are rigorous and (for atomic chemisorp- 
tion at the zero-coverage limit) even exact. Moreover, 
these interrelations are expressed in terms of observa- 

bles only (the heats of chemisorption and various con- 
stants), which makes comparison with experiment di- 
rect and unambiguous. The latter is critical in devel- 
oping any serious theoretical model, which should be 
falsifiable (in the Popperian sense), and the BOC-MP 
model is of this kind. 

The scope of the BOC-MP modeling can be further 
extended to embrace, in principle, any aspect of chem- 
isorption and surface reactivity, provided the model 
projections retain their rigor and simplicity. The latter 
is naturally more difficult to achieve the more complex 
the admolecules become. But this job is worth trying. 
The chemical appeal of the BOC-MP model is that it 
is a truly “back-of-the-envelope” model, which can be 
directly used by the practitioners in the field. 

This  work began during m y  collaboration with the late Earl 
L. Muetterties. He  strongly believed in the comprehensible 
chemical order in chemisorption and kept  encouraging me to 
look for general analytic modeling. I t  is hard to express the depth 
of m y  gratitude to Earl. I wish to thank Roald Hoffmann, John 
T. Yates, Jr., Gerhard Ertl, Michel Boudart, Alexis T. Bell, Jay  
B .  Benziger, Robert J .  Madix,  and Sylvia T.  Ceyer for exciting 
discussions and illuminating comments. M y  special thanks are 
to Roger C. Baetzold, whose parallel work on theory of chemi- 
sorption gave me much insight. 
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One of the challenges that often faces chemists is the 
organization and understanding of the enormous wealth 
of molecules and solids whose structures have been 
determined. Oftentimes there is a clear dependence of 
structure on electron count, observations that have led 
to the famous counting rules associated with the names 
of Huckel,’ Walsh,2 Sidgwick, Powell, Nyholm, and 
Gil le~pie ,~ Woodward and H ~ f f m a n n , ~  and Wade.5 
Simple one-electron orbital methods have been ex- 
tremely useful in constructing such models.6-8 The 
success of Huckel’s rule in polyene chemistry, the 
one-electron molecular orbital model behind the 
Woodward-Hoffmann rules, and the utility of extend- 
ed-Huckel ideas to probe the properties of molecules 
of all types are clear evidence that imaginative use of 
very simple molecular orbital ideas can help us un- 
derstand large tracts of chemistry. In this Account we 
show that there is a simple idea, drawn from the field 
of topology, that unifies many of these orbital problems. 
It ties together observations from many different areas 
of chemistry and provides a larger window with which 
to look at  molecular and solid-state structure. 

Jeremy Burdett was educated at the Universities of Cambridge and Michi- 
gan and has been on the faculty of The University of Chicago since 1978. 
His interests ile in understanding the relationship between the geometrical and 
electronic structure of molecules and solids and how it controls molecular 
and solid-state properties. 
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Some Structural Diversity 
Figure 1 shows calculated energy difference curvesgJo 

as a function of the number of relevant electrons for ten 
different structural problems. They have been calcu- 
lated by using the simplest possible one-electron mo- 
lecular orbital modes. The Huckel method was em- 
ployed for homoatomic systems, the angular overlap 
model was used for heteroatomic systems,6 and the 
Huckel implementation of tight-binding theory was 
employed for solids. In all cases the results of the 
calculation faithfully mimic the experimental observa- 
tions. The most striking feature of this figure is that 
the curves are all extremely similar in shape but the 
examples as diverse as chemistry itself. 

(1) Huckel, E. 2. Phys. 1931, 60, 204; 1932, 72, 310; 1932, 76, 628. 
(2) Walsh, A. D. J. Chem. SOC. 1953,2260,2266,2288,2296,2301,2306. 
(3) (a) Also known a~ the VSEPR rules. (b) Gillespie, R. J.; Nyholm, 

R. S. Qt. Rev., Chem. SOC. 1957, 11, 339. ( c )  Gillespie, R. J. Molecular 
Geometry; Van Nostrand-Rheinhold London, 1972. 

(4) (a) Woodward, R. B.; Hoffmann, R. J. Am. Chem. SOC. 1965,87, 
395, 2046, 2511,4389. (b) Woodward, R. B.; Hoffmann, R. Acc. Chem. 
Res. 1968, 1 ,  17. 

(5) Wade, K. Adv. Inorg. Chem. Radiochem. 1976,18, 1. 
(6) Burdett, J. K. Molecular Shapes; Wiley: New York, 1980. 
(7) Hoffmann, R. Science (Washington, DE.) 1981,211,995. 
(8) See, for example: Streitweiser, A Molecular Orbital Theory for 

Organic Chemists; Wiley: New York, 1961. 
(9) Burdett, J. K. Struct. Bonding (Berlin) 1987,65,30. 
(10) (a) Rouvray, D. H.; King, R. B., eds. Graph Theory and Topology 

in Chemistry; Plenum: New York, 1987. (b) Burdett, J. K., in ref loa. 
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Figure 1. Energy difference diagrams as a function of electron 
count for ten structural problems. The units for the plots, which 
are not shown, are either Huckel p's (for the homoatomic prob- 
lems) or the ex and f,, of the angular overlap model (for hetero- 
atomic problems). 

In Figure l a  &dioxides of transition metals are 
universally found for do systems but the trans isomer 
is found for d2; in Figure l b  cis-dicarbonyls are found 
for d6 systems but the trans arrangement is found for 
d4, two results mimicked by our curves. These struc- 
tural preferences are controlled by a bonding between 
the metal and ligands, and the electron count here is 
simply the number of a electrons. Since there are three 
metal d a  levels, for a donors the half-filled point comes 
at  do and the a manifold is full at d6. For a acceptors 
the half-filled point comes at  d6, where all the metal- 
ligand a-bonding levels are full. Not all of the electron 
counts represented on the plots correspond to real 
chemical examples. In Figure la, for example, the lower 
electron counts would involve depletion of the oxide 
levels, and in Figure l b  electron counts higher than d6 
would populate the C-O a* levels. However, as we shall 
see, it is the shape of the complete curve that we will 
fiid particularly interesting even though parta of it may 
correspond to chemically unrealistic situations. 

The tetrahedral geometry of CH, with eight electrons 
is well-knob, but with ten electrons the butterfly ge- 
ometry of SF4 is favored, as shown in Figure IC, a result 
of course predicted by Nyholm and Gillespie's rules. 
(We actually plot here the variation with total number 

of electrons minus two. The calculations employed only 
the p orbitals of the central atom and the hydrogen 1s 
orbitals, in the spirit of the RundlePimentel approach.) 
In Figure Id, cyclobutadiene with four a electrons 
distorts away from the square structure as expected on 
the basis of pseudo-Jahn-Teller ideas, but six-a-electron 
molecules such as Bi42- and Se42+ are stable in this ge- 
ometry. In Figure l e  the twisted geometry found for 
allene, (CH2)C(CH2), with four P electrons is in accord 
with the van't Hoff rule, but with other electron counts 
the planar structure is suggested to be favored. Al- 
though there are, as yet, no molecules known with other 
electron counts, von Schleyer and co-workers" have 
shown by calculation that the planar structure is fa- 
vored for the species (CH2)C(CB2H2) with two R elec- 
trons. The plot applies to inorganic examples too, al- 
though here the units become the e ,  and f, of the an- 
gular overlap model6 instead of the Huckel P. The 
molecule { [ (CH3)3Si]2N)2Be, for example, isoelectronic 
with allene, has a BeN2Si4 skeleton that has the twisted 
geometry too. 

Octahedral transition-metal complexes are Jahn- 
Teller unstable for the configurations d7, d8 (low spin), 
and d9, but this geometry is stable for d6 as reproduced 
by the calculation in Figure If. Here the orbital filling 
is of the metal-ligand u orbitals. For d8 (low spin) the 
effect is so large that no axial ligands are present, and 
all these molecules are square planar. Note that at this 
electronic configuration the amplitude of the plot is a 
maximum. In Figure lg we show Huckel's 4n, + 2 rule 
applied to the four-membered ring. Relative to its 
open-chain analogue the square is stable for n, = 0 (two 
a electrons) and n, = 1 (six a electrons) but is unstable 
for four a electrons. In Figure l h  we see how to "color" 
the vertices of a symmetrical molecule to give cis and 
trans isomers. The ABAB pattern is stable at the 
half-filled point (as found in all known "push-pull" 
cyclobutadienes) but the AABB pattern is stable else- 
where. Figure l i  refers to the thermally allowed path- 
way for electrocyclic ring closure-the famous Wood- 
ward-Hoff" rules. The mode of closure is predicted 
to depend on electron count, the result we would obtain 
by reworking the original ideas using orbital symmetry 
conservation. Finally, Figure l j  shows how a linear 
chain of atoms can distort via a Peierls distortion.12 At 
the half-filled band the dimerization route is favored 
(as predicted, and found to occur in polyacetylene, 
(CH),) but for other electron counts it is not. We have 
gone to some length to show a diverse collection of 
chemical examples whose energy difference curves with 
four nodes are so similar. At this point it is surely 
obvious that some overiding principle is at work here. 
The Topological Link 

The principle is in fact a topological one. All of these 
examples are built up from a variety of different or- 
bitals, of s, p, and d type, involved in u and a type 
interactions. The geometries of our examples are dif- 
ferent too, which also makes them appear to have little 
in common. But, in terms of how the orbitals are linked 
together in the two molecules of each problem, the ex- 
amples are very similar. Such considerations, associated 

(11) Krogh-Jesperson, K.; Cremer, D.; Poppinger, D.; Pople, J. A,; 
Schleyer, P. v. R.; Chandrasekhar, J. J. Am. Chem. SOC. 1979,101,4843. 

(12) Albright, T. A.; Burdett, J. K.; Whangbo, M.-H. Orbital Inter- 
actions in Chemistry; Wiley: New York, 1985. 
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Figure 2. Returning walks of length two and four in open-chain 
and branched four-atom molecules. 

with the connectivity of the orbital problem, have tra- 
ditionally lain in the domain of graph theory13 and to- 
pology. Over the years many interesting correlations 
between physical properties and molecular shape have 
been derived.14 

But how do we define shape? This question has been 
tackled in several ways but one answer, of interest to 
us here, is by the definition of topological indices of 
various types. One particular index (and there are in- 
deed many others) involves the generation of the num- 
ber of self-returning walks13J5 as shown in Figure 2. 
The spatial complexity of the molecule can be described 
by counting the number of paths that meander through 
the molecule along the "bonds" and eventually, after 
m steps, return to the atom we started on. Notice that 
the branched molecule has a larger number of returning 
four-walks than the unbranched one, even though the 
number of returning walks of length two are the same 
in the two systems. There is a nice correlation between 
such indices and properties such as the melting and 
boiling points of organic hydrocarbons using this re- 
s ~ 1 t . l ~  This is all very well, but how do we relate such 
a foreign concept to the traditional ideas of the chemist, 
centered around molecular orbital diagrams and con- 
cerning not only the details of the energy level pattern 
but how and why they go up and down in energy on 
distortion or substitution. 

In fact there is a very powerful technique, the method 
of moments, that provides a direct link between such 

(13) Trinajstic, N. Chemical Graph Theory; CRC: Boca Raton, FL, 

(14) See the series of articles in ref loa. 
(15) Bonchev, D., in ref loa. 

1983; Vols. I, 11. 

Figure 3. Generation of the fourth and eighth moments of the 
T-electronic density of states for cyclobutadiene by enumeration 
of the number of self-returning walks of length 4 and 8. Since 
each of the four T orbitals is equivalent by symmetry, the walks 
are only enumerated for one orbital (i) to give w i .  The relevant 
moment bn) is then computed by multiplying this figure by four. 
The Huckel T levels of cyclobutadiene are shown for completeness, 
referred to an a value of zero. 

topological indices and the energy Ievel patterns of 
molecules and solids. The method was d e ~ e l o p e d ' ~ ' ~  
by solid-state physicists in the late 1960s but can with 
profit be used in a simple fashion by chemists.2@22 
Given a set of energy levels with energies {ez), the mth 
moment for systems with discrete and continuous en- 
ergy level spectra (molecules and solids, respectively) 
is given by p, = or $p(e )em de, where p ( t )  is the 
energy density of states of the solid. Now, instead of 
studying the electronic properties of a molecular or 
solid-state structure in the traditional way by an 
analysis of the details of its set of energy levels, {ei) or 
p ( t ) ,  we use the set of moments {p,). In principle, we 
have not lost any information, but in fact have gained 
something of importance. These moments are directly 
related to topogeometrical features of the structure16 
in the following way. In terms of a Huckel Hamiltonian 
the mth moment may be written as 

p, = Tr (H)m (1) 

= CCH,,Hk, ... H,, (2) 
I 

where H is the Hamiltonian matrix and the second sum 
in eq 2 runs over all products of order m. This means 
that the mth moment is simply the weighted sum of all 
the walks of length m that start off on orbital j and 
return to that orbital in m steps. The weights are sim- 
ply the interaction integrals (H,,) between the two 
orbitals 1 and m involved in the step, usually set pro- 
portional to the overlap integral &,. There is thus a 
direct connection between the moments and the topo- 
logical index noted above. Electronic information, 
however, is coded into the walks that define the mo- 
ments by their weights via the products of the HI ,  as- 
sociated with each step. Thus there is a more easily 
visualized relationship between the structural elements 
of the molecule or solid and the (p,) than between the 
structure and the { e i ] .  Figure 3 shows how the fourth 
and eighth moments of the a system of square cyclo- 
butadiene are evaluated in this way.23 Here all the HE, 
are of course equal to the Huckel p parameter. Notice 
that with these ideas, the second moment, which in- 

(16) Cyrot-Lackman, F. ThBse, Orsay, 1968. 
(17) Cyrot-Lackman, F. J. Phys. Chem. Solids 1968,29, 1235. 
(18) Cyrot-Lackman, F. Surf. Sci. 1969, 15, 535. 
(19) Ducastelle, F.; Cyrot-Lackman, F. J. Phys. Chem. Solids 1970,31, 

(20) Burdett, J. K.; Lee, S. J. Am. Chem. SOC. 1985, 107, 3050. 
(21) Burdett, J. K.; Lee, S. J. Am. Chem. SOC. 1985, 107, 3063. 
(22) Burdett, J. K.; Lee, S.; McLarnan, T. J. J. Am. Chem. SOC. 1985, 

(23) Burdett, J. K.; Lee, S. Croat. Chim. Acta 1984,57, 1193. 

1296; 1971,32, 285. 

107, 3083. 
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Figure 4. Energy difference curves as a function of fractional 
orbital (or band) filling expected for pairs of structural problems 
whose energy density of states differ a t  the mth moment. In 
practice, it  is often found that although the number of nodes is 
given correctly, the crossing points of the curves are system de- 
pendent. One of the curves, that describing the sixth-moment 
behavior, is dashed for clarity. 

volves only walks to first nearest neighbors and back, 
is a measure of the coordination number or strength. 
In Figure 1 all of the pairs of systems we compared each 
used the same second moment. In some cases this is 
clear to see (e.g., Figure la), but in others (e.g., Figure 
Id) it is built into the parameters of the distorted 
molecule. 

At this stage it is important to know when ideas based 
on such a one-electron orbital model (and strictly 
speaking its simplest, Huckel-type implementation) can 
be useful. In fact such simple models have permeated 
much of chemistry, but we will not dare to use the 
moments method in those areas where, from experience, 
the use of high-quality numerical calculations is essen- 
tial. This excludes from consideration many problems 
where there is a change in coordination number, where 
soft distortion modes exist, or where the major interest 
is in the numerical values of reaction rates or bond 
energies and lengths. 

Energy Difference Curves 
The power of the moments approach lies in the fol- 

lowing observation. If two structures differ first at the 
mth moment, then the energy difference curve between 
them as a function of orbital filling often has a very 
characteristic shape set by the value of m. In fact the 
energy difference curve as a function of fractional or- 
bital occupancy will have m nodes, with the structure 
most stable at the lowest band fillings being the one 
with the largest mth moment.1620i24 Figure 4 shows the 
form of the curves we expect to see. Here we introduce 
x, the fractional orbital occupancy, or for solids the 
band filling, as empty; 0 < x < 1; full. The amplitude 
of the energy differences decreases with increasing m, 
a feature readily understood in terms of the self-re- 
turning-walk picture. If two systems differ at the sec- 
ond nearest neighbor (a walk of a t  least length four), 
then their energy difference will be smaller than for two 
similar systems that differ at the first nearest neighbor 
with a walk of at least length two. 

The examples of Figure 1 are thus fourth-moment 
problems in this new language. In order to understand 
the structural preferences as a function of electron 
count, we need to look at the walks of length four in the 
two systems. The allene example of Figure l e  can be 

(24) Heine, V.; Samson, J. H. J .  Phys. F 1980, 10, 2609. 

uuu 

Figure 5. Important walks of length four between the orbitals 
important in the structural problems of Figure 1. See text for 
details. 

used to illustrate the approach. Figure 5a shows the 
7r orbitals of the planar and twisted forms. It is easy 
to see that in the planar form, there exist walks (shown 
schematically in Figure 5b) of length four that connect 
the two ends of the molecule. (In fact this diagram 
represents more than one walk, since it may originate 
on either of the three orbitals of the problem.) In the 
twisted form this set of walks does not exist since one 
end orbital is orthogonal to the other. So planar allene 
has the larger number of four-walks and thus the higher 
fourth moment. It is then the structure favored at low 
electron counts. The twisted form with the smaller 
fourth moment will be the stable isomer at the half- 
filled point. A similar situation holds for the cis and 
trans transition-metal complexes of Figure la,b. Here 
the problem is also controlled by 7r bonding. In the 
trans form the two four-walks of Figure 5c,d are pos- 
sible, but in the cis form only that of Figure 5e is pos- 
sible. The cis arrangement, with the smaller fourth 
moment, is thus the structure stable at the half-filled 
point. This is where all the M-0 7r-bonding orbitals are 
full. For the dioxo compounds, this occurs at do and 
for the carbonyls, at d6. In Figure lg  it is obvious that 
the cyclic structure possesses a set of walks around the 
ring (Figure 5f) not available for the open-chain system. 
The cyclic structure is therefore the one unstable at the 
half-filled position, in accord with Huckel’s rule. 

Some of the other problems need a little bit of algebra 
to sort out. The Jahn-Teller and Peierls problems of 
Figure ld,f,j are cases in p ~ i n t . ~ J ~  Here, if the average 
“coordination number” (the second moment) remains 
constant, then it is the fourth moment that is the first 
to differ on distortion, and we can readily show that it 
is the undistorted structure that has the higher fourth 
moment. Notice that the treatment is independent of 
whether we are considering a a-orbital problem (in 
transition-metal complexes), a 7r-orbital problem (in 
cyclobutadiene) or the Peierls distortion, which may be 
either of ~7 type (recall that a linear chain of hydrogen 
atoms under ambient conditions distorts to H2 units) 
of T type (polyacetylene). 
Hiickel and Mobius Rings 

All of the structural problems of Figure 1 are 
fourth-moment ones and may be understood in a sim- 
ilar way. Other systems will have energy difference 
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curves with a different number of nodes. For example, 
with reference to our comments concerning Huckel’s 
rule for the four-membered ring, it is interesting to find 
that, in general, the stable regions of the plob of Figure 
4 come at  the positions expected on the basis of the 
rule.21 If we wish to compare the stability of an m- 
membered ring relative to its open-chain analogue, then 
the first moment that will be different will be the mth, 
associated with the two sets of complete walks around 
the ring (clockwise and counterclockwise) of length m 
and absent in the open chain. So the ring has the larger 
mth moment. Thus the three-membered ring is stable 
for x = 1/3 (Huckel’s n, = 01, but there are three 
maxima (at ’/& 1/2, and 5/6,  which correspond to 
Huckel’s n, = 0, 1, and 2) for the six-membered ring. 
As a result cyclopropenium is stable as its cation but 
benzene is stable as a neutral molecule. We have known 
for a long time that Huckel’s rule has a strong topo- 
logical component. Here we have shown a link to other 
structural problems. From our approach there is 
nothing special about the orbitals of the problem of ?r 

type. Similar observations should be observed for the 
u manifold. Indeed ideas related to these have been 
used in organic chemistry for some years under the title 
of u a r o m a t i ~ i t y . ~ ~  

Sometimes the situation is a little more complex. 
Instead of the first disparate moment (the mth say) 
controlling the energetics, sometimes the (m + 1)th or 
(m + 21th is important too. For example, the computed 
energy difference curvep1 as a function of x which sep- 
arates the graphite structure (which is made up of 
six-rings fused together) and that of the nonmetal net 
in ScB2C2 (made up of equal numbers of fused five and 
seven rings) is a weighted sum of the relevant fifth- and 
sixth-moment curves of Figure 4. The seventh-moment 
curve, being of smaller amplitude, makes a much 
smaller contribution to the overall energy difference 
curve. 

Many of the arguments we used above for Huckel’s 
rule are applicable to the Woodward-Hoffmann rules,g 
phrased initially by these authors4 in terms of orbital 
symmetry conservation. Zimmermanp6 used the 
Huckel-Mobius concept to demonstrate the strong to- 
pological control of the reaction pathway. Mobius rings 
are ones where there is always an orbital phase change 
on making a circuit a round the ring as shown in Figure 
5g for the four-membered cyclization example of Figure 
li. Huckel rings contain no such inversion (Figure 5h). 
The energy level p a t t e r n ~ ~ ~ ~ ~ ~  for Huckel and Mobius 
systems are quite different, a result that may also be 
seen via the moments method.23 The weight of the 
Huckel walk around the ring in Figure 5h is positive, 
since all the overlap integrals (and hence all the Him) 
are of the same sign. However, in the analogous Mobius 
walk, since there is a single sign change in the set of Hlm 
on moving around the ring, there is a sign change in the 
relevant product of eq 2. Thus the absolute value of 
the mth moment for the Huckel walk is always larger 
than that for the Mobius walk. From the curves of 
Figure 4, at the half-filled point ( x  = 1 / 2 )  notice that 
it is the system with the smaller fourth moment that 
is more stable for four-rings, but the system with the 

(25) Dewar, M. J. S. Bull. SOC. Chim. Belg. 1979, 88, 957. 
(26) Zimmerman, H. E. Acc. Chem. Res. 1971,4, 272. 
(27) Yates, K. Huckel Molecular Orbital Theory; Academic: New 

York, 1978. 

Table I 
element 

T1 Pb Bi Po 
crystal structure hcp fcc a-bismuth simple 

cubic 
electronic configuration s2p’ s2p2 szps s2p4 

predominant ring type 3 3 6 4 
x (p-only model) 0.17 0.33 0.5 0.67 

larger sixth moment that is stable for six-rings. Since 
carbon chemistry is the chemistry of the half-filled band 
(there are four orbitals and four electrons involved in 
the butadiene cyclization), this implies that the lower 
energy pathway for cyclizations involving four-rings will 
be via the Mobius route (conrotatory), but that for the 
six-rings will be via the Huckel route (disrotatory). 
These results are in agreement with experiment of 
course. Zimmerman26 used similar arguments to un- 
derstand the origin of the twisted structure of allene, 
which we described earlier. 

Notice that in all of these examples the emphasis is 
somewhat different from the traditional molecular or- 
bital approach, which relies heavily on symmetry ideas 
for their interpreation. The Jahn-Teller theorem ap- 
plied to the transition-metal species of Figure lf, for 
example, is a case in point. There will only be an or- 
bitally degenerate state for octahedral Cu” if all of the 
ligands are identical (such that the point symmetry is 
Oh), and, strictly speaking, a first-order Jahn-Teller 
distortion is only possible under these conditions. The 
viewpoint presented here tells us that as long as there 
are walks of a given type, the actual nature of the lig- 
ands attached to the metal is of somewhat secondary 
importance. It is well-known that there are an enor- 
mous number of “Jahn-Teller” distorted systems where 
one or more of the ligands are different from the rest, 
an observation that emphasizes the merits of the 
broader approach to this problem. Thus symmetry 
appears not to be as important as A 
further illustration of this important aspect of the to- 
pological approach is also apparent of course in our 
discussion of the Woodward-Hoffmann rules. In con- 
trast to the original formulation of the rules in terms 
of orbital symmetry conservation, molecules do not have 
to possess elements of symmetry for the schemes to be 
applicable. The rules work, for example, irrespective 
of whether the two substituents R and R’ of Figure l i  
are the same or different. It is the connectiuity of the 
transition state that is important, a point noted by 
Zimmerman.26 

Solids 
Our approach is just as applicable to the solid state, 

which is where it originated.16-19 For example, just as 
Figure l h  showed us how to color the vertices of cy- 
clobutadiene to produce the more stable isomer (ABAB 
or AABB) as a function of electron count, exactly 
analogous plots dictate29 the stable patterns for the 
so-called ordering problem in solids. A particularly nice 
example of the topological control of geometry is ex- 
hibited by the structuresz1 of the heavy p-block ele- 
ments at the bottom right-hand side of the periodic 

(28) We have pointed this out before. For a similar argument but from 
a different point of view see the discussion in: Burdett, J. K. Zmrg. Chem. 
1977,20, 1959. 

(29) Burdett, J. K.; Kulkarni, R. J. Am. Chem. Soc., in press. 
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Figure 6. Calculated energy difference curves for the a-bismuth 
and cubic and hexagonal close-packed structures relative to that 
of simple cubic. Notice the strong similarity to the curves of Figure 
4 for m = 3 and 6. 

table (Table I). Figure 6 shows the calculated energy 
difference21 curve between the different structures as 
a function of p electron count from a band structure 
calculation. (Here we have ignored the 6s2 pair and 
used a p-orbital-only model.) Notice the very charac- 
teristic shapes of these curves, which accurately reflect 
the correct stable structure and are understandable 
using the moments method. The dominant moment of 
the close-packed structures is the third. With a coor- 
dination number of 12, three-walks involving neighbors 
in the first coordination shell are important. In the 
simple-cubic structure, i t  is obviously the fourth mo- 
ment that is important, and in the a-bismuth structure, 
a puckered graphite sheet, it is the sixth. Remembering 
that the energetic importance of the moments decreases 
with their order, we can understand why the curves of 
Figure 6 are those for third- and fourth-moment prob- 
lems. (The separation of hcp and fcc structures is more 
difficult. It turns out2’ to be a fifth-moment problem.) 

Of general interest from Figure 6 is the stability of 
arrangements with three-rings at  low electron counts 
and of structures with six-rings at  the half-filled point. 
A similar third-moment problem is apparent when we 
compare2I the rhombohedral boron structure (contain- 
ing linked icosahedra with many three-membered rings) 
to that of cubic diamond (where the smallest ring size 
is six). The boron structure is stable for lower electron 
counts (boron has a 3/s-full s/p band), and the diamond 
structure stable at the half-filled point (carbon has a 
half-full s /p  band). We find similar control of the 
molecular structure. Three-membered rings are found 

in species with low electron counts (sometimes called 
“electron deficient”) as typified by the boranes, tran- 
sition-metal cluster compounds, and dihydrogen com- 
p l e ~ e s . ~ ~  Six-membered rings are the norm in 
“electron-precise” carbon chemistry. 

A Universal Panacea? 
Although two structural problems may appear to be 

completely different from the geometrical point of view 
and contain elements that come from very different 
parts of the periodic table, in topological terms they 
may sometimes be very similar indeed. The areas where 
the use of the energy difference curves of Figure 4 be- 
comes more complex, and rapidly not so useful, are 
obviously where the orbital picture itself becomes more 
complex. These problems are invariably difficult to 
understand from the conventional standpoint too. 
Sometimes energy levels from different parts of the 
structural problem overlap. For example, Huckel’s 
ideas applied to the benzene(4+) ion (which should be 
aromatic) are in practice not valid at all. A t  this elec- 
tron count 0 rather than H electrons have been removed 
from the neutral molecule. In solids this orbital (or 
band) overlap problem is sometimes especially acute. 

We have for a long time known about the importance 
of that eternal triangle, symmetry, overlap, and elec- 
tronegativity, in controlling much of chemistry. Of 
these, symmetry is perhaps the most elusive to pin 
down. In our discussions of the Jahn-Teller theorem 
and the Woodward-Hoffmann rules we have shown 
that it is not really the presence of bona fide symmetry 
elements that are important in controlling the under- 
lying chemistry of the problem, but the connectivity of 
the orbital picture. (There is more evidence for this 
view from the study of systems with “accidental 
degeneracies”, degeneracies that are of a higher order 
than the maximum permitted by the point 
Since the definition of the orbital connections of a 
problem includes all the geometrical information, the 
symmetry defined by the atomic positions is then su- 
perseded by a more powerful concept. A much broader 
view of structural chemistry is the result. 
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